Обложка поста
Автор: Команда Тетрики
Просмотры

Квадратные уравнения: алгоритмы решения

Учебник Время чтения: 2 мин.

Квадратные уравнения — это уравнения вида 2+bx+c=0, где коэффициенты a, b,c — это некоторые числа, причём a ≠ 0.

Решить квадратное уравнение — это значит найти все его корни или, напротив, установить, что корней нет.

Есть два самых распространённых способа решения таких уравнений: первый — с помощью формулы корней, второй — с помощью теоремы Виета. В статье мы рассмотрим оба варианта, чтобы вы могли выбрать более удобный для вас.

Основные понятия квадратных уравнений

Чтобы при изучении темы не возникало сложностей с пониманием определений, давайте рассмотрим основные понятия квадратных уравнений.

  1. Приведённое квадратное уравнение — это уравнение, в котором коэффициент а=1.
  2. Неприведённое квадратное уравнение — это уравнение, в котором коэффициент а≠1.
  3. Полное квадратное уравнение — это уравнение, в котором все коэффициенты отличны от нуля.
  4. Неполное квадратное уравнение — это уравнение, в котором хотя бы один коэффициент равен нулю.

Решение квадратных уравнений с помощью формулы корней

квадратные уравнения
квадратные уравнения

Также для удобства решения существуют свойства коэффициентов квадратного уравнения, а именно: 

1. если сумма коэффициентов квадратного уравнения равна 0 (a + b + c = 0), то:

2. если сумма коэффициентов а и с равна коэффициенту b (а + с = b), то:

квадратные уравнения

Способы решения неполных квадратных уравнений

квадратные уравнения

Решение квадратных уравнений с помощью теоремы Виета

На практике теорема Виета чаще всего применяется для решения приведённых квадратных уравнений.

Важное условие для применения теоремы Виета — это уравнение должно иметь корни, то есть — D≥0.

Для приведённого квадратного уравнения х2+px+q=0, согласно теореме Виета, верно следующее:

Рассмотрим алгоритм решения приведенных квадратных уравнений с помощью теоремы Виета:

квадратные уравнения

Итак, теперь вы знаете, как решать квадратные уравнения двумя способами: с помощью формулы корней и теоремы Виета. Потренируйтесь самостоятельно, чтобы закрепить информацию. Или приходите на занятия в нашу онлайн-школу! Разберём любые темы, которые вызывают у вас сложности 💜

Как вам статья?
Реакция 6
Реакция 12
Реакция 19
Спасибо! Ваш комментарий отправлен на модерацию

Комментарии 0

Оставить комментарий

Подпишитесь
и получите подарки
Декор элементы
онлайн-школа для детей и подростков 1-11 класс

Онлайн-школа Тетрика

Преподаватели ‒ эксперты

Подбираем репетитора под любые цели. Уроки ведут действующие эксперты ЕГЭ, кандидаты наук с опытом работы от 5 лет. Преподаватели английского языка имеют международные сертификаты: CAE, IELTS, TKT, CELTA, TESOL

Декор элемент Декор элемент Декор элемент

Декор элемент Занимайтесь, где
угодно и когда удобно

Составим индивидуальный план подготовки и гибкое расписание — можно учиться из любого места и совмещать со школой или работой

Декор элемент Контроль качества занятий

Методисты Тетрики следят за всеми занятиями, фиксируют прогресс учеников и оценивают качество онлайн-уроков. А репетиторы отправляют обратную связь родителям после каждого урока

Декор элемент Интерактивная платформа

Удобный инструмент для онлайн-занятий по всем школьным предметам

Декор элемент

Наши преподаватели

Попробуйте первое бесплатное занятие с одним из наших преподавателей

Попробуйте бесплатно занятие в онлайн-школе Тетрика

Пробное занятие по любому школьному предмету, подготовке к ЕГЭ и ОГЭ или поступлению в первый класс
Отправляя форму, вы соглашаетесь с офертой и даёте согласие на обработку ваших персональных данных
Произошла ошибка, попробуйте позднее.